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The matrix superpropagator of a 
chiral invariant pion-nucleon interaction 
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Department of Physics, Queen Mary College, Mile End Road, London El 4NS, UK 

MS received 1 June 1972 

Abstract. We take a chiral SU(2) x SU(2) invariant pion-nucleon interaction to first order 
in the meson covariant derivative. The covariant derivatives are identified in terms of the 
Gursey matrix, and choosing the exponential parametrization for this we calculate the 
matrix superpropagator using Fourier transform techniques. 

1. Introduction 

An often quoted example of the occurrence of nonpolynomial Lagrangians is in chiral 
theories, that is, when we take a nonlinear realization of the chiral symmetry on the 
pseudoscalar meson fields. These Lagrangians were developed as ‘effective’ Lagrangians 
to investigate, and reproduce more simply, the results of current algebra (Weinberg 
1967), the chiral groups involved being SU(2) x SU(2) and SU(3) x SU(3). We denote 
these by K(2) and K(3) respectively. 

If the Lagrangian was of the form gF(@) or g$$F(@), with F nonpolynomial in the 
meson fields 6, then F was expanded to low order in the minor coupling constant i, and 
the resultant polynomial interaction was used in a tree-graph approximation (Gasioro- 
wicz and Geffen 1969 and references therein). Since then it has been suggested that we 
take the effective Lagrangian as a more orthodox field theory object by putting in loops 
(Charap 1970) and also by using the developments in nonpolynomial field theories to 
handle the unexpanded Lagrangian, that is, perform the perturbation series in the 
major coupling constant g, where for each order in g we have all orders in the minor 
coupling constant. 

Now, in a closed form, the chiral Lagrangians can be expressed as matrix interactions. 
The matrices form a representation of a nonabelian group and this does not allow us to 
make use of the usual functional formulation of the S matrix (Delbourgo 1972). Different 
techniques have had to be devised and, for a K(2) or K(3) interaction expressed in terms 
of the Giirsey matrix with no derivatives, the two-point functions, the so called super- 
propagators, have been given by Delbourgo (1972) and Ashmore and Delbourgo (1971). 

We here consider the K(2) pion-nucleon case when we include a derivative coupling, 
as we would if we followed the Weinberg (1968) prescription for writing chiral invariant 
Lagrangians, or if we used the Giirsey approach (Chang and Giirsey 1967) to include an 
arbitrary coupling constant. Our calculation of the pion superpropagator makes use 
of the integral transform technique of Delbourgo (1972). This method can be used for 
SU(2) because the pions transform under a representation of the adjoint group SU(2)/Z(2) 
which is isomorphic to the rotation group SO(3). This allows a change from Cartesian 
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coordinates to spherical polars, that is, to the single group invariant and two angles. 
We return briefly to this point in the last section. 

We emphasize that in performing these calculations we are treating the fields not as 
operator-valued distributions but as real, c number quantities ; this allows us to integrate, 
differentiate and form power series expansions with respect to the fields. 

In 5 2 we review briefly the prescriptions for writing chiral invariant Lagrangians, 
and the identification of the covariant derivatives in terms of the Gursey matrix. In  
5 3 we give our reasons for choosing the exponential parametrization for the latter, and 
in $4 4 and 5 we outline our calculation of the superpropagator. We conclude in 6 with 
some remarks on the K(3) problem. 

2. Chiral invariant Lagrangians 

If we are to use a nonlinear realization of the chiral symmetry on the pseudoscalar 
mesons, which act as the massless Goldstone bosons (Gasiorowicz and Geffen 1969); 
then there exist two equivalent prescriptions for writing a chiral invariant Lagrangian. 
On one hand we have the algebraic approach, given for K(2), by Weinberg (1968) and in 
greater generality by Coleman et al(1969) and Isham (1969}, and on the other hand the 
matrix approach associated with Gursey (Chang and Gursey 1967). The relationship 
between the two methods was first formalized by Macfarlane er a1 (1970) and recently 
the K(3) and general K(n) solutions have been given by Barnes et a1 (1972a). 

Our work is mainly concerned with the nonpolynomial problems that are raised by 
these prescriptions, and as, in any case, these prescriptions are well known we will omit 
all proofs and just state what they are. 

2.1.  The Weinberg method 

We start with fields which transform nonlinearly under the chiral group, and from which 
we construct the so called covariant derivatives. If we are interested in SU(2) pions and 
nucleons, and if we restrict the pion-nucleon interaction to first order in the meson 
derivative, we would write a chirally invariant Lagrangian with massless pions as : 

(1) 

where n = nitsi and the tsi are the Pauli 2 x 2 traceless, hermitian matrices. The pion and 
nucleon covariant derivatives are respectively Duxi and DplC/a, and as their construction 
follows quite easily from the Gursey method we leave further details until it has been 
outlined. The pion term is given by 

I” = I”, + $“(i@ - m ) , P  t,bP + g$‘yPy5DPn: t,bo 

9, = i F 1  Tr(D,nD@n) (2) 

and contains the meson kinetic terms and then contributions to n-n scattering, where 
F, is the unrenormalized pion decay constant. 

In the nucleon terms we note that the nucleon covariant derivative involves pion- 
nucleon interactions but it will be shown in § 4 that these are restricted to an even number 
of pions at the vertex. It is the pion covariant derivative which gives the odd number of 
pions and includes the single-pion Yukawa vertex. From this we find that, if the pseudo- 
vector coupling constant is GRm, then 
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2.2. The Giirsey method 

We start with nucleon fields Nu which transform linearly under the chiral group, that is, 
under an SU(2) transformation 

N, -+ [exp(iBjaj)]t N, ( 3 4  

N a  + [ex~(i6jaj~s)I,PN, (36) 

and under the parity changing part of K(2) we demand 

where Bi and 6i are the parameters of the transformation and we have suppressed the 
Dirac labels. 

Then a nucleon kinetic term iN6" is K(2) invariant but a mass term mNN, though 
SU(2) invariant, is not K(2) invariant. To overcome this, Gursey introduced a two by 
two unitary matrix? 8 which is a nonlinear function of igy,n. (The dimensional constant 
0 is such that /?z is dimensionless.) The Gursey matrix 8 i s  constructed such that "ON, 
now nonlinear in the pions, is K(2) invariant and, amongst other things, this imposes 
unimodularity on 8. 

With the observation, attributed by Gursey to Ogievetskii, that there exists the 
chirally invariant pion-nucleon coupling N(8)N which is to first order in the meson 
derivatives we can write the Gursey equivalent of equation (1) : 

At this stage we can identify the covariant derivatives in equation (2). We first make 
the redefinition of nucleon fields 

where we take the unitary, unimodular square root. These fields now transform non- 
linearly (in the pions) under the chiral group and are the type of field that the Weinberg 
approach starts with. 

We also remove the ys dependence of 8 by using 

o =  P + U f P - U t  

where P, = i(1 f ys) are projection operators in the Dirac space. The matrix U is the 
same function of ipn as 8 was of ipy,a. 

We then find we have: 

iN(8)N = $y'y,D,n$ ( 7 4  

iNt7N = i$P$ - i $ y p y s  Dpn$ (74  
where the covariant derivatives have been identified as 

t Strictly, i! is an 8 x 8 matrix in the direct product space of the 2 x 2 I-spin matrices and the 4 x 4 Dirac 
matrices. We will consistently leave the Dirac matrices to take care of themselves, and any traces indicated are 
to be taken over the SU(2) matrix space. 
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Using equations (7) and (8) we find that, as we expect, the invariant Lagrangians 

We can rewrite equation (1) as 
given in equations (1) and (4) are equivalent, with g = (g'-+). 

2 = 2* + tj?"(ia- m)ija + 2;: 

3;: = i$"yF(+[ v+, d, +gy,{ V + ,  a,, V}),Pijp = itj?uyMX,,(rt),B$p. 

( 9) 

where the pion-nucleon interaction is given by 

(10) 
This is the matrix interaction which we would like to investigate in perturbation theory. 

3. The exponential parametrization 

It is well known that Weinberg's solution for the covariant derivatives involves an 
arbitrariness expressible as a redefinition of the pion fields, and we would expect this also 
to be true of the matrix solution if the two are equivalent. This is indeed the case, because 
we have the arbitrariness in the matrix function U(n). We will first decide on a method 
to parametrize U and then pick a particular function of x with which to perform the 
calculations of the next section. 

Two common methods of parametrizing a unitary matrix involve a hermitian 
matrix H.  We have the exponential parametrization eiH and the Cayley, or rational 
method (1 + iH) (1 - iH)- '. If we further require unimodularity then the exponential 
case requires H traceless and for 2 x 2 matrices this is also true for the rational case. 
Thus we can write H = h p i  for some real {hi}.  

Our problem is to parametrize the unitary, unimodular Giirsey matrix U, and more 
importantly for our interests its square root V, in terms of the pion fields. Any SU(2) 
vector formed from the ni can only be proportional to rt i ,  so that we must have 
hi = a(n)ni, where a(rt) is some arbitrary scalar function of rti and is therefore a function 
of the only SU(2) invariant rt = (n,n,)"*. We have 

U = exp ia(n)n 

V = exp $ia(x)n 

or 

1 + ia(n)n 
V =  J( 1 + u2n2) 

where we have made use of the product law crpj = dij + ieijkcrk. 
At this point we note that, provided a is an even function, then the parametrization 

(1 1) can give entire functions in ni , whereas (12) cannot ; we have singularities at na(n) = i 
(for c1 odd both involve singularities). 

The importance of this is that nonpolynomial interactions which are entire functions 
of the fields seem to have many advantages? over the non-entire interactions; not least 
being that the former define strictly local field theories in the sense of J&e (1967). 

t We recommend the review of advantages given by Salam (1971) and Isham et al(l971). 
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Furthermore, if we took the particular choice of a(n) = 2 5  a dimensional constant, 
then we have an interaction involving exp(ihc) type terms which we might expect to give 
terms like exp( -A2A), with some matrix complications, in the superpropagator. This, 
in fact, will be the case and it is precisely this function of the free field propagator, A, 
which Lehmann and Pohlmeyer (1971) have interpreted as a uniquely defined distribu- 
tion. 

We will play safe, therefore, and take 

V = exp(i;ln). (13) 

There is yet another benefit accruing from this choice, which is involved with the 
practical matter of simplifying matrix complications. If we write a general V = a +ibjaj 
then we can identify a = i T r  V, and ibj = $Tr(ajV). For the choice of equation (13) 
we have 

so that 

V = -  1--a.- T r V  ;( ; Jas,) 
and this will enable us to separate the matrix part of the calculation from the combina- 
torics of the T products. Tr V is a scalar function of n and for the choice (13) 
Tr V = 2 cos An. 

4. The superpropagator 

If we are interested in a perturbation theory for the nonpolynomial interaction given by 
equation (IO), then the first object that we will encounter is the two-point function for the 
exchange of any number of mesons, the superpropagator, given by 

C(A),P,d = (01 T* : X,(n),” : : Xv(n’)yb :IO) (15) 
P V  

where ni = ni(x’). The free field propagator A is given by 

(OIT[ni(x)nj(x‘)]lO) (ni(x), nj(x’))  SijA(x-x’). 

The calculation of the superpropagator involves two tasks ; one is the handling of the 
matrix complication which means that, although ( exp(tini), exp(t(in))) = exp(tit;A) for 
scalar parameters t i ,  we have (exp IC, exp IC’) # exp(aiaiA); and the other will be the 
combinatoric problems raised by taking the T products of nonpolynomial functions of 
multiplets of fields which are not the simple exponentials exp(tini). 

The expression (14) will enable us to separate the matrix part, and the combinatoric 
problems will be obviated by replacing nonpolynomial functions by Fourier transform 
representations where all the field dependence is in an exponential ; the application of 
Wick’s theorem will then give back exponential functions. We have 
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Then, using expression (14), we find 

i 
22 

B, = -a,(d,Tr Vd,Tr V-Tr V8,djTrY) 

where 8, = a/&, and Tr V = 2 COS AX. 
If we now use 

are all entire functions of n. 
We can see here one major simplification in calculating the superpropagator. 

Because A ,  is an even function, and B, is an odd function of the pion fields, we will have 
the term ( : A p ( n ) : ,  :B,,(n'):) vanishing. We are left with the ( A ,  A )  and ( B ,  B )  terms, 
equation (15) being of the form 

(20) V A )  = 101(Ap(n) ,  AV(nO) +g2>J50i's(B,(n), B,,(n')) 
P V  

where the direct products of the Dirac matrices are shown. 
In the next section we will illustrate in some detail the method of calculating the 

( A ,  A )  terms, but just state the result for the ( B ,  B )  term as no different technique is 
used. 

5. The calculation 

Contributing to equation (20) we have the term 

( : A,(n)  :, : A,(n') :) = -aiOac~ijk~,bcF~:b(A) 

where 

FL:b(A) = ( : T'l'(n)njd,n, :, : T'l)(~')n',dvn'b :). 

The SU(2) properties are taken care of by noting that, as the fields in the T product 
are eliminated in pairs, then, in general, objects like F E , , '  can only be SU(2) invariant 
numerical tensors built from Kronecker deltas. In this case we have a fourth rank 
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tensor which must be expressible as the linear combination 
3 

F;Vb = F;('~(yy'~"~ 
r = 1  

for scalar functions Fr,! and the a(r) are the three independent tensors given by 

a(l)jkab = 8jk8ab 

N(2)jkab = 6ja6kb 

a(3)jkab = Bjb8ka'  

Using (22) then gives that 

'ijk'abe FJhb p v  = $6ic(Cr(2) - .(3))jk&F$b. (23) 
We now introduce the Fourier transform representation 

where the triple integral is over the three parameters {ti}. All the pion field dependence 
is in the exponential, so applying (24) to (21) will leave us with integrals over the much 
simpler T product given by 

G ; ~ ~ ( A )  = ( : exp(in,t,)nja,nk : , : exp(in'm5'm)n'aavdb :). (25) 

Expanding the exponentials as power series, using Wick's theorem and resumming gives 

(26) 

Replacing 5r5'l by - a/aA acting on the exponential we are left with just the following 
integral to perform : 

(42) - a(3))jkabG$b = 2(dpAdvA - Aa,a,A) (3 - AtJ'J exp( - A<15'1). 

J - m  J - m  

Using the inverse relation to (24) we can rewrite the above in terms of the original 
functions T(')(u,). Then, changing to polar coordinates and using the fact that the T") 
are scalar functions of U = J(uiui) we can perform the angular integrations to arrive at 

2 "  
I = jo du JOm du T(')(v)T(')(iAu)uu sin(uu). 

These integrals are easily done, and if we define the dimensionless quantity 2 = A2A, 
we have 

A4 
2 

I = -2-2C(z) 

where 

C(Z) = lozz !$ sinh'x = 3 chi(4Z)-; ln(4y.Z). 

Thus, combining equations (21), (23), (26) and (29) we have 

( :A , (n ) : ,  :Av(n' ) : )  = ~i@ai(C(Z)+sinh2(2Z))~pav In Z (30) 
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where we have used the formal identity 

a,av In Z = Z-2(za,avz-a,Za,Z). 

The calculation of the ( B , ,  B , )  term involves more work but follows a similar pattern 
to yield 

( :B,(n) : , : Bv(n’) :) = +i@~i(4ZC(Z)a,av In Z + 38,8,Z). (31) 

Thus our final result for the pion superpropagator of the pion-nucleon interaction is 
given by 

C(Z),S,d PV = i(ni)!(ni)$H(z) 

where 

H(Z) = l@l(C(Z)+sinh2(2Z))8,~, In Z+4g2y5@y5(38,8,Z+4ZC(Z)8,dv In Z) 

and Z(x) = A2A(x). 

directly from (15) by expanding XP(n) to low order in A. 

(32) 
P V  

We have checked to order A6 that the above expression agrees with that obtained 

6. The K(3) problem 

We conclude this paper with some remarks on the equivalent K(3) problem. The direct 
extension of the results in 0 2 to K(3) would involve the octet of pseudoscalar mesons M i  
and the three quarks, but only needs slight modification to incorporate the octet of 
spin-half baryons. The general form of the SU(3) Gursey matrix is available (Barnes et al 
1972b) but, in any case, we could again pick the exponential solution and proceed with the 
calculation as before. 

The main problem comes with trying to perform the SU(3) equivalent of integrals 
like that occurring in (27), because the traces would now be functions of the two SU(3) 
Casimir invariants. This means that we cannot use the coordinate change from the 
Cartesian M i  to eight-dimensional spherical polars with their single invariant ; that is, 
the adjoint group SU(3)/Z(3) under which the Mi transform is isomorphic to a subgroup 
of the eight-dimensional rotation group SO(8). The SU(3) equivalent of the spherical 
polars (two invariants and six angles) does exist (Charap and Davies 1972) but so far has 
proved too complex to allow the integrals to be performed. 

It may be that the matrix methods of Ashmore and Delbourgo (1971) can be extended 
to calculate the equivalent K(3) superpropagator. 
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